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CUBIC EQUATIONS WITH 2 ROOTS IN THE INTERVAL [−1, 1]
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Abstract

The conditions for cubic equations, to have 3 real roots and 2 of the roots lie in the closed
interval [−1,1] are given. These conditions are visualized. This question arises in physics
e.g. the theory of tops.
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1. INTRODUCTION

Cubic polynomials are ubiquitous in physics. I cite here just some examples from the intro-
duction in [1]: “. . .The applications of cubic and quartic equations in all branches of science are
vast. . . .There are well over 200 real gas equations, many of which are also cubic. The elastic waves
propagating on the surface of solids, the so-called Rayleigh waves . . .The Hodgkin-Huxley model
in mathematical neuroscience encounters a quartic . . . In general relativity, through the d’Inverno
and Russel-Clark algorithms, the Petrov classification of the Weyl conformal curvature . . . ”

The question, if a cubic polynomial has only real roots, can be decided using the discriminant
condition. This question can be extended to the question: When has a cubic polynomial 0. . .3
roots in a given open or closed interval?

This question arises e.g. in physics in the theory of tops, i.e. rigid bodies that move under the
influence of gravity around a fixed point with 3 degrees of freedom (the 3 Euler angles). Here in
the case of nutation the upper and lower limits for cos(ϑ) are given by 2 real roots of a cubic in
the closed interval [−1,1]. The 3r d real root lies outside this interval, see appendix A.

Description of the problem treated in this article:
Determine the conditions under which exactly 2 roots of a monic cubic polynomial

x3 +ax2 +bx + c lie in the closed interval [−1,1].

2. THE CONDITIONS FOR A CUBIC POLYNOMIAL WITH 2 ROOTS IN [−1, 1]

Let P = x3 +ax2 +bx + c be a monic cubic polynomial. The discriminant is defined as:

D3 =−27c2 + (18 ab −4 a3)c +a2b2 −4b3. (1)

Assume the condition D3 ≥ 0 to get 3 real roots is fulfilled.

Calculate these 5 quantities:

A = a +b + c +1, B = a −b + c −1, AT = 4(c +1), BT = 4(c −1), E = (a − c)c −b +1. (2)
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Distinguish 3 cases depending on c:
1. c< 0
Replace a → −a, c → −c , this is the map M : x → −x. Now c > 0 and we get one of the

following cases.

2. 0 ≤ c≤ 1
( A < 0 and B ≤ 0 ) or ( A ≥ 0 and B > 0 ) or

( A > AT and B = 0 ) or ( A = 0 and B < BT ). (3)

3. c> 1
( A ≤ 0 and B ≤ 0 ) or ( A ≥ 0 and B ≥ 0 and E ≥ 0 ). (4)

3. THE DISCRIMINANT SURFACE D3 = 0

3.1. The 2 components of the discriminant surface

In the a −b plane the discriminant surface consists of a parabola for c = 0, it consists of 2
components for c , 0:
For c > 0 a smooth component at the left of Pb and below of Pa , the 2 parabolas in the following
figure 1. The parabolas intersect at (0,0) and have perpendicular axes. The second component,
smoothwith the exception of a cusp is located inside the 2 parabolas. All cusps lie on the parabola
PC :

aC = 3c1/3, bC = 3c2/3, PC : a2 −3b. (5)

The 2 parabolas are defined by:

Pa = b2 −4 ac, Pb = a2 −4b. (6)

The 2 components approach in the limit a,b →+∞ to the parabolas. To see this e.g. for Pb replace
b in the equation for D3 by a2

/
4. The two terms with a6 cancel. The remaining terms are of size

O(a4). So for b →+∞ the components 1 and 2 of D3 approach to the parabola Pb . Component 1
from outside, component 2 from inside. For Pa replace a in the equation for D3 by b2

/
(4c) ...

Figure 1. c = 1, the 2 components of D3 = 0, the 2 parabola Pa ,Pb The cusp is located in the dark grey
shaded lens. The cusps for all c lie on the red parabola PC
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The parabola PC : a2−3b also shows up in the discriminant of the differentiated cubic D2 =
4(a2−3b) =−12b∗ with b∗ the second coefficient in the depressed cubic x3+b∗x+c∗. For 3 real
roots besides D3 ≥ 0 this D2 has to be > 0. Figure 1 visualizes that D3 ≥ 0 already implies D2 > 0.

3.2. The intersection of the planes A and B with the discriminant surface

Define the following 2 planes:

A = a +b + c +1, B = a −b + c −1. (7)

The planes A = 0 and B = 0 represent polynomials with a root +1 or −1

AT = 4(c +1), BT = 4(c −1), AI 1/2 = 2(c +1±2
p

c). (8)

For c ≥ 0: The discriminant D3 intersects with the plane B = 0 in 2 lines A = AI 1/2 (the subscript
I means intersect) and D3 is tangent to B at the line A = AT (the subscript T means tangent or
touch). D3 is tangent to the plane A = 0 at the line B = BT and doesn’t intersect A (the two BI 1/2

are not real).
The intersection of the 2 planes A = 0 and B = 0 in a line represent the polynomials (x−1)(x+

1)(x − c).
A = 0 and B = BT represent the polynomials (x − 1)2(x + c), double roots because it’s an

intersection (tangent) with D3. B = 0 and A = AT represent the polynomials (x +1)2(x + c).
B = 0 and A = AC represent the polynomials (x +1)(x − p

c)2, double roots because it’s an
intersection (though not tangent) with D3.

E is a ruled surface, for fixed c a line. The lines (A = 0,B = BT ) and (B = 0, A = AT ) lie in this
surface E . Used in the condition 11, figure 7 and 8 for the case c > 1 to distinguish a different
number of roots in the same quadrant:

E = (a − c)c −b +1. (9)

The line AT , BT is defined by A
/

AT +B
/

BT −1 = 0. It follows E = (
A BT +B AT − AT BT

)/
8.

4. THE CUBIC POLYNOMIALS WITH 2 ROOTS IN THE INTERVAL

Color in the following figures:
the discriminant in blue (for c = 0 a parabola and a double line b = 0),
numbers in red show the number of roots in the interval,
light green shaded open regions inside the 2 quadrants built by the lines A and B ,
dark green open lines, the corresponding polynomial has 2 roots in the interval,
dark green bullet, end point of a closed line with 2 roots in the interval.

4.1. The case c < 0

Replace a → −a, c → −c , this is the map M : x → −x. Now c > 0 and we get one of the
following cases.
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4.2. The case c = 0

Looking at the following figure 2, we get this condition:

( A < 0 and B ≤ 0 ) or ( A ≥ 0 and B > 0 ) or

( A > AT and B = 0 ) or ( A = 0 and B < BT ). (10)

Figure 2. c = 0, i.e. a root 0 and roots of the quadratic polynomial x2 +ax +b, in red the number of roots
of the quadratic in the interval [−1,1], the green lines represent polynomials with 1 root in the interval
the blue curve is the parabola for the discriminant D2 = 0

4.3. The case 0 < c < 1

The condition is the same 10 as for the previous case, see figures 3 and 4.

Figure 3. c = 1/4, roots of the cubic polynomial x3+ax2+bx+c , in red the number of roots in the interval
[−1,1]. The point A = AI 2 is the intersection of the line B with the discriminant D3

ALGORITHMIC MATHEMATIC AND MATHEMATICAL MODELING 33



Ruhland H.

Figure 4. c = 1/4, the cusp, roots of the cubic polynomial x3 +ax2 +bx + c , in red the number of roots in
the interval [−1,1]. The point A = AI 1 is the intersection of the line B with the discriminant D3

4.4. The case c = 1

The condition is the same 10 as for the two previous cases, see figures 5 and 6.

Figure 5. c = 1, roots of the cubic polynomial x3 +ax2 +bx + c , in red the number of roots in the interval
[−1,1]

Figure 6. c = 1, the cusp, roots of the cubic polynomial x3 +ax2 +bx +c , in red the number of roots in the
interval [−1,1]
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4.5. The case c > 1

Now we get a new condition, see figures 7 and 8:

( A ≤ 0 and B ≤ 0 ) or ( A ≥ 0 and B ≥ 0 and E ≥ 0 ). (11)

Figure 7. c = 4, roots of the cubic polynomial x3 +ax2 +bx + c , in red the number of roots in the interval
[−1,1]. The black line E allows to distinguish the 2 cases: 0 roots in the interval left of the line and the
desired 2 roots in the interval right of the line. The line continues upwards to following figure with the
cusp and passes there through the point A = AT

Figure 8. c = 4, the cusp, roots of the cubic polynomial x3 +ax2 +bx +c , in red the number of roots in the
interval [−1,1]. The black line E allows to distinguish the 2 cases: 0 roots in the interval left of the line and
the desired 2 roots in the interval right of the line

5. CUBIC POLYNOMIALS WITH 0, 1 OR 3 ROOTS IN THE INTERVAL

To treat these remaining cases, the 5 quantities A,B , AT ,BT ,E defined in section 3.2 are suf-
ficient. The reader can find the conditions just looking at the figures and using other quadrants
in the conditions. The line E is used in figure 7 in the right quadrant to distinguish between 0
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and 2 roots in the interval. The same line E can also be used in figure 3 in the upper quadrant to
distinguish between 1 and 3 roots.

6. CUBIC POLYNOMIALS WITH A PAIR OF COMPLEX CONJUGATED ROOTS
AND 0 OR 1 ROOTS IN THE INTERVAL

These cases are simpler than the previous cases. Now the discriminant condition is D3 < 0.
Only the 2 quantities A,B defined in section 3.2 are sufficient for the conditions. The case with
different numbers of roots in a quadrant does not occur.

The previous figures contain enough information, to treat these cases too. Start from one
of the 6 regions with red numbers, 5 of them in the following figure 9. For the 6th region with
a red 3, see the detailed figure 4 with the cusp. Move towards the blue curve with D3 = 0. For
polynomials on this curve we get a real double root. Proceeding now into the region D3 < 0 this
real double root changes into a pair of complex conjugated roots. When n is the number of roots
in the interval in the starting region we get n′ = n mod 2 roots in D3 < 0.

Figure 9. The here relevant parts of figure 3 for c = 1/4. The black interval on the line B = 0 belongs to
a polynomial with the root −1 in [−1,1] and 2 complex conjugated roots. The 4th arrow pointing to the
black 1 in the upper quadrant starts in the detailed figure with the cusp

The other cases for c and the final result with the conditions are left for the reader.

7. NUMERICAL AND PLAUSIBILITY CHECKS

The results in section 2 were checked numerically with thousands of cubic polynomials. Ra-
tionals instead of floats for the coefficientswere used. So it was possible, that the test also covered
polynomials on the dark green lines, belonging to the equalities≥,≤,= in the conditions. The test
was also designed to cover the cases with double roots D3 = 0 and with c = 1.

A plausibility check for the conditions:
The following 2 maps generate a Kleinian 4-Group for c , 0. The map M : x →−x leaves 2

roots in [−1,1] in this interval The map N : x → 1
/

x maps a root in [−1,1] out of this interval,
the other roots from outside into the interval. So N maps the problem “2 real roots in a closed
interval” into the problem “1 root in an open interval”.
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The corresponding 2 maps in the coefficient space are:

M : a →−a,b → b,c →−c, N : a → b/c,b → a/c,c → 1/c. (12)

Showhow thesemaps N , M act on the 5quantities A,B , AT ,BT ,E and on the conditions 10, 11.
Show how the maps change a condition from true to false.

Appendix

A. An example from physics: the Lagrange top

See [2], chapter 3.6 “The Heavy Symmetric Top” (3.66) (3.72) and (3.73) with the cubic polynomial.

a = I3ω3

I1
, b = pΦ

I1
, α= 2E ′

I1
, β= 2 M g l

I1
. (13)

(1−u2) (α−βu)− (b −a u)2 = 0. (14)

In the case of nutation the upper and lower limits for cos(ϑ) are given by 2 real roots of the cubic above
in the closed interval [−1,1]. The 3r d real root lies outside this interval. With the conditions from section
2 we get the following results. There should be no confusion with the a,b in 13 and the coefficients of the
monic cubic depending on the context.

A =−(a −b)2/β, B =−(a +b)2/β, AT =−4(b2 −α−β)
/
β, BT =−4(b2 −α+β)

/
β. (15)

When b ,±a the A,B in 15 are A,B , 0 and have the same sign. So the polynomial is located in the
interior of the left or right quadrants (in the light gree shaded region not on the dark green lines on the
boundary in the figures 2 and ff.). The coefficient c of the monic cubic is c = (b2 −α)

/
β.

Let the discriminant condition D3 ≥ 0 be fulfilled.

Case 1: if b ,±a and −1 ≤ c ≤+1 then 2 roots in [−1,1].
There are 2 remaining cases:
— b ,±a, |c| > 1, polynomials in the interior of the quadrants, the line E is needed in a subcase,

— b = ±a, polynomials on the boundary of the quadrants with a root ±1, the intersection points
AT ,BT are needed.

They are left for the reader as exercise.
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Кубические уравнения с 2 корнями на отрезке [−1, 1]

Руланд Х.1, MSc, независимый исследователь,� helmut.ruhland50@web.de
Аннотация

Приведены условия для кубических уравнений, при которых три корня оказываются
действительными, и два из них лежат на отрезке [−1,1]. Эти условия визуализирова-
ны. Такая задача возникает в физике, например, в теории волчков.
Ключевые слова: кубическое уравнение, уравнение четвертой степени, полиномы
с действительными корнями, отрезок.
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